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ABSTRACT 
The active volume of a distribution reservoir has only two 
storage components – diurnal demand storage and 
persistence storage. No-failure persistence storage provides 
for peaks in demand not attributable to diurnal variations. 
Emergency storages, including fire-fighting reserves, are just 
particular types of failure persistence storage. The 
persistence storage volume held in a reservoir needs only 
be the maximum of the calculated no-failure and failure 
persistence storages. 

Persistence demand is well represented as a logarithmic 
decay function where the decay rate is a function of the 
supply area’s Maximum Day and 30-Day peaking factors. 
The net persistence storage required for any event is the 
reservoir persistence demand for the period of the event 
less than the reservoir inflow during that period. Solving this 
relationship as a differential equation allows calculation of 
the critical event period, and the maximum required 
persistence storage.  

Key Words: Water supply; Peaking factor; Stochastic; 
Demand percentile; Risk; Storage. 

 

INTRODUCTION 
There are commonly two conflicting interests when sizing 
distribution reservoir storages, i.e. operational and water 
quality. Operational interests seek to maximise storage sizes 
because a basic role of storage is to provide for supply 
system failures as an emergency backup supply. Clearly, 

the greater the storage volume, the less chance the system 
would run out of water during a system failure. On the other 
hand, water quality interests seek to minimise storage 
volumes because of the connection between storage volume 
and water age and, in turn, disinfection byproduct formation 
and loss of residual disinfectant.  

As a rule of thumb, the volume held in a water distribution 
system’s storages accounts for 70-80% of the total system 
volume. Hence there is potential to reduce a system’s water 
volume, and water age, through the management of its 
storages. While the desirable situation would be to have a 
water supply which was so chemically balanced and low in 
dissolved organics that water age impacts were insignificant, 
this is not the case for most systems and an agreement 
needs to be reached between system reliability and water 
age.  

This paper discusses how an agreement position can be 
reached which results in a minimum storage volume while 
providing for all the identified failure risks. It is noted that this 
paper has been prepared to supplement the suite of 
companion papers prepared by the same author, Water 
Supply Peaking Factor Stochastics (Donaldson 2018-1), 
Water Supply Risk Assessments Using Stochastic Peaking 
Factors (Donaldson 2018-2) and Water Supply Peaking 
Factor Stochastics and Multiple Levels of Service, 
(Donaldson 2018-3). 
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STORAGE TANK 
COMPONENTS 
Figure 1 shows schematically the storage components of a 
water supply storage tank.  

The unused storage is the air gap above the storage top 
water level which provides freeboard against overflows.  

The dead water storage provides for water impacted by 
bottom sediments. It is common to assume that 10% of the 
operational storage is dead water but a better approach 
would be to adopt a minimum depth, for example 300 mm 
before the carry-over of sediments is expected to occur.  

 

 

 

 

 

 

 

 

 
 

Figure 1: Reservoir Storage Components 

 

The reservoir’s two active storage components are 
discussed as follows. 

Diurnal Demand Storage 
Under normal demand conditions storage volumes in all 
reservoirs rise and fall to a regular pattern between their fill 
and draw-down phases in response to diurnal changes in 
demand. The extent of draw down is a function of the setting 
which commences the fill phase. Some reservoirs, 
commonly those of small capacity, are controlled by local 
level probes to draw and fill on a regular basis up to 20 
times per day. Other reservoirs have larger fill and draw 
levels to achieve water turnover. Reservoirs might be set up 
to only draw and fill a few times per day to limit pumping 
cycles, or to minimise flow variations and pumping energy in 
the supply mains. In other cases, reservoirs are primarily 
controlled to fill at night and draw down during the day to 
take advantage of off-peak electricity charges.  

The minimum volume which allows for the diurnal demand is 
broadly estimated as 4 hours of the Average Day peak hour 
demand. 

Persistence Storage 
Persistence storage provides for peaks in demand not 
attributable to diurnal variations. The volume of persistence 
storage needed is a function of the capacity of the supplying 
mains to the reservoir. There are peaks in demands 
associated with both no-failure and failure events. 
Emergency storage and fire-fighting storage are failure types 
of persistence storage. The Figure 1 persistence storage 
volume needed in a reservoir is the greatest persistence 
volume after assessing all no-failure and failure scenarios.  

 

PERSISTENCE STORAGE 
CALCULATION 
The focus of this paper is the persistence storage volume 
component, and identification of the factors which influence 
that volume. Discussion about the estimation of no-failure 
volumes using demand persistence and demand stochastics 
follows. 

Demand Persistence Curves 
Demand persistence curve values can be calculated from 
any supply area’s twelve-month daily demand record as the 
maximum 1 day of demand, the maximum 2 days of 
demand, the maximum 3 days of demand, etc. through to 
365 days of demand. The 1 day demand persistence is 
called the Peak Day or Maximum Day (MD) demand and the 
365 day demand persistence period is called the Average 
Day (AD) demand. The 30 day persistence is sometimes 
called the Mean Day Maximum Month but is named the 30 
Day demand in this paper.  

Persistence curves have long been recognised as taking the 
form of a logarithmic decay function. Equation (1) shows the 
Goodrich Formula (McGhee (1991), p. 14) which is 
sometimes quoted in text books for estimating the maximum 
day demand P for a time t as a percentage of the annual 
average demand.  

𝑃 = 180. 𝑡().*)                  (1) 

While the Goodrich Formula is based on a fixed one-day 
maximum day peaking factor of 1.8 and a maximum 
persistence period of 365 days, that equation can be 
generalised as: 

Unused storage 

Diurnal demand storage 

Persistence storage 

Dead water storage 
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𝑃𝑒𝑎𝑘𝑖𝑛𝑔	𝐹𝑎𝑐𝑡𝑜𝑟 = 𝑀𝐷	 ×	𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒	𝑝𝑒𝑟𝑖𝑜𝑑<               (2) 

where MD equals the actual one-day peaking factor and b is 
a logarithmic decay coefficient which indicates the degree of 
demand persistence, and is calculated in this paper as a 
function of the MD and 30 Day peaking factors: 

b = Log10 (30 Day Peaking Factor / MD Peaking Factor) / 
Log10 (30)                                               (3) 

Equation (2) in conjunction with equation (3) is generally 
only valid for persistence periods of less than about 35 days 
because it is limited by the 30 Day demand peaking factor. 
Figure 2 shows a typical persistence curve prepared from a 
twelve-month flow meter record overlaid with the 
representative curve prepared using equations (2) and (3). It 
illustrates the high correlation with actual data records which 
can be achieved using those equations.  

 

 

Figure 2: Example of Actual and Representative Persistence Curves 

 

Persistence Storage Calculation 
Persistence curves are useful for determining the required 
persistence storage volume for a supply area.  

That storage is generally calculated as the demand less the 
inflow, i.e.: 

𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒	𝑆𝑡𝑜𝑟𝑎𝑔𝑒	 = 𝑃𝑒𝑎𝑘𝑖𝑛𝑔	𝐹𝑎𝑐𝑡𝑜𝑟	 ×
	𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝐷𝑎𝑦	𝐷𝑒𝑚𝑎𝑛𝑑	 × 	𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒	𝑃𝑒𝑟𝑖𝑜𝑑 −
𝐼𝑛𝑓𝑙𝑜𝑤	𝑅𝑎𝑡𝑒	 × 	𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒	𝑃𝑒𝑟𝑖𝑜𝑑              (4) 

The persistence period for the maximum required 
persistence storage is the unknown in equation (4) but can 
be determined by the combination of equations (2), (3) and 

(4) as a function of the persistence period and solving as a 
differential equation for the maximum storage volume.  

Equations (5) to (8) summarise that determination where MD 
= MD Peaking Factor, PP = Persistence Period, b = 
logarithmic decay coefficient, I = Inflow/AD (dimensionless 
as a function of the Average Day demand), and V = 
Persistence Storage/AD (also dimensionless as a function of 
the Average Day demand): 

𝑉 = 𝑀𝐷. 𝑃𝑃<. 𝑃𝑃 − 𝐼. 𝑃𝑃            (5) 

𝑉 = 𝑀𝐷. 𝑃𝑃(*J<) − 𝐼. 𝑃𝑃            (6) 

LM
LNN

= 𝑀𝐷. (1 + 𝑏). 𝑃𝑃< − 𝐼 = 0           (7) 
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𝑃𝑃 = Q R
ST.(*J<)

U
*/<

              (8) 

Expansion of equation (8) then gives:  

𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙	𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒	𝑃𝑒𝑟𝑖𝑜𝑑	𝑓𝑜𝑟	𝑚𝑎𝑥𝑖𝑚𝑢𝑚	𝑣𝑜𝑙𝑢𝑚𝑒 =

Z	
R[\]^_

`Ta

	ST	Nbcde[f	gchi^j		×	(*J<)
	k
(* <a )

                           (9) 

where b is the logarithmic decay coefficient calculated using 
equation (3).  

The maximum required persistence storage is then 
calculated from equation (10): 

𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒	𝑆𝑡𝑜𝑟𝑎𝑔𝑒 = l𝑀𝐷	𝑃𝑒𝑎𝑘𝑖𝑛𝑔	𝐹𝑎𝑐𝑡𝑜𝑟 ×

𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙	𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒	𝑃𝑒𝑟𝑖𝑜𝑑(*J<) −

	𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙	𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒	𝑃𝑒𝑟𝑖𝑜𝑑	 × 	 R[\]^_	
`T

m × 𝐴𝐷          (10) 

 
 
 
 
 
Maximum Storage-Inflow Curve 

Equations (9) and (10) are better appreciated when they are 
visually presented as a maximum storage-inflow curve. A 
maximum storage-inflow curve allows optimisation of the 
capacities of a supply area’s storage and its inflow main. 
Anderson and Vickers (1989) described their application for 
optimising the size of storage supply mains of greater than 
20 km length where it is much more economical to reduce 
the supply pipe diameter, and the flow rate, and increase the 
storage capacity. 

Figure 3 is a plot of the maximum required storages for an 
example supply area with MD and 30 Day peaking factors of 
respectively 2.2 and 1.5. The corresponding Critical 
Persistence Periods are shown as red-coloured data points 
on that figure.  

Both the storages and inflows are dimensionless and plotted 
as ratios of the AD demand. Figure 3 shows, for instance, if 
the supply area had an inflow equal to 1.7 times the AD 
demand the maximum required persistence storage for all 
persistence periods is 0.74 times the AD demand. As would 
be expected, no persistence storage would be needed if the 
inflow is equal to or greater than the MD ratio to the AD (i.e. 
2.2 in the Figure 3 example). 

 

 

Figure 3: Example: Maximum Storage-Inflow Curve 
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FAILURE STORAGE 
CALCULATION 
 
Demand Percentile Equation 
The companion papers, Water Supply Peaking Factor 
Stochastics (Donaldson 2018-1) and Water Supply Risk 
Assessments Using Stochastic Peaking Factors (Donaldson 
2018-2), show that flow records represent a supply area’s 
demand and from those records, MD and 30 Day peaking 
factors can be stochastically developed with respect to the 
supply area’s AD demand for any demand percentile. It is 
also shown that there is a relationship between the demand 
percentile for a supply area’s backup, the failure rate of the 
normal supply, and the adopted level of service. That 
relationship is set out in equation (11): 

𝐷𝑒𝑚𝑎𝑛𝑑	𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 = 1 −	(1 −	 *
gce]njb	ocib

	)pbqb]	^\	rbjqehb 
                                            (11) 

Equation (11) allows calculation of the demand percentile 
which determines the peaking factor associated with a 
failure event. All demand percentile peaking factors for the 
south-east Queensland supply area have been tabulated 
(Donaldson 2018-4). This Peaking Factor Table (“the online 
PF Table”) is available online at 
http://awa.asn.au/documents/Percentile_Peaking_Factors.pdf 1, 
and a worked example of the use of equation (11) is 
included in the companion paper Water Supply Risk 
Assessments Using Stochastic Peaking Factors. It is noted 
that the demand percentile for a no-failure event is, by 
definition, the 100th percentile whereas a failure event with a 
failure rate longer than one year must have a lesser demand 
percentile.  

The term “failure event” is any non-usual event which can 
impact on a supply system and includes pipe, pump and 
power supply failures, and demand events such as those 
associated with fire-fighting events. However, use of the 

Demand Percentile equation (11) for determining the 
peaking factor associated with a failure event requires some 
additional considerations. These are discussed as follows. 

Level of Service 
The Level of Service (LOS) in equation (11) is the 
acceptable frequency of failure where failure is defined as 
the loss of water supply. The companion paper, Water 
Supply Peaking Factor Stochastics and Multiple Levels of 
Service (Donaldson, 2018) proposed an algorithm, equation 
(12), for calculating the LOS based on arbitrary weightings 
for the supply area’s residential, non-residential and 
community populations. 

𝐿𝑒𝑣𝑒𝑙	𝑜𝑓	𝑆𝑒𝑟𝑣𝑖𝑐𝑒 = 10	 × 	𝑒`\\bhibL	rntt]u	`jbc	rh^jb            (12) 

The Affected Supply Area Score is calculated by summing 
the residential population divided by 600,000 and the 
equivalent person non-residential population divided by 
125,000. While equation (12) and these weightings are 
clearly arbitrary, their use results in a LOS gradually rising 
from a minimum of 10 years as the supply area’s importance 
increases. That 10 year minimum is primarily based on 
advice given in the Hunter Water edition of the Water Supply 
Code WSA 03 (WSAA, 2009). 

Failure Rate 
Determination of the failure rate of a water supply system 
involves assessing the probability of failure of the supply 
system components and estimating the risks and associated 
outage times for the component combinations. The 
assessment of risk combinations is often undertaken using a 
fault tree analysis, but the simplicity of a typical distribution 
system permits use of only the AND and OR gates provided 
for in Boolean logic. Figure 4 shows a schematic of a 
simplified typical water supply distribution system where the 
storage provides backup against the possible failure of its 
treatment plant, pump station and pipelines, or some 
combination of those failures. 

 

 

 

                                                   
1 Alternatively, a hyperlink to the PF Table can be found on page 
6 of Donaldson 2018-2. Click on the light blue text appearing 
immediately before Table 3 of that paper. 
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Figure 4:  Typical Distribution System Supply to Storage 

 

The Failure Rate used in equation (11) is the combination of 
the failure probabilities of the individual components 
supplying the storage. Boolean logic states that the 
combined probability of two independent events is the 
addition of each event’s occurrence probability (an AND 
gate), and for two dependent events it is the multiplication of 
each event’s occurrence probability (an OR gate). The 
probability of full loss of supply to the town storage is then 
calculated by combining the supply system’s element failure 
probabilities as follows: 

𝑊𝑎𝑡𝑒𝑟	𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡	𝑝𝑙𝑎𝑛𝑡 + 𝑃𝑢𝑚𝑝 + 𝑃𝑖𝑝𝑒	𝐴 + (𝑃𝑖𝑝𝑒	𝐵	 ×
𝑃𝑖𝑝𝑒	𝐶) + 𝑃𝑖𝑝𝑒	𝐷                                            (13) 

 

This combination of probabilities is only valid if the failure of 
each element has the same consequence, i.e. full loss of 
supply to the storage. Pipes B and C need to be combined 
as an OR gate to obtain that result because failure of either 
pipe by itself would not result in a complete loss of supply. 
Nevertheless, it is noted that for supply systems which 
include parallel elements, e.g. Pipes B and C in Figure 4, 
there might be scenarios where the extended failure of one 
of the parallel pipes requires a greater storage provision 
even though the system still retains some flow capacity to 
the storage.  

Supply Outage 
Estimation of the failure rate and LOS allows calculation 
using equation (11) of the demand percentile, and in turn the 
peaking factor associated with a failure event. A hydraulic 
model could then be set up with, for example, a pipe failure 

and an associated demand peaking factor but this is not 
enough for the analysis of water supply systems where 
storages are included because the probable outage time is 
also needed.  

That outage time is calculated by multiplying the 
unavailability of each supply system element by its 
probability of failure. Unavailability (hours per annum) of a 
supply element is calculated by dividing its outage time by 
its failure rate. The combined unavailability of elements in 
series is the sum of the individual elements’ unavailability. 
The combined unavailability of parallel elements is 
calculated as the minimum outage time of the parallel 
elements multiplied by their combined failure probability. 
Use of the larger of the two times would be wrong because it 
ignores that the other pipe would not have failed for some 
part of that time. The unavailability of the Figure 4 example 
is therefore the following combination of its element 
unavailabilities and failure probabilities.  

𝑊𝑎𝑡𝑒𝑟	𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡	𝑝𝑙𝑎𝑛𝑡	𝑢𝑛𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 +
𝑃𝑢𝑚𝑝	𝑢𝑛𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 𝑃𝑖𝑝𝑒	𝐴	𝑢𝑛𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 +
𝑀𝑖𝑛𝑖𝑚𝑢𝑚	(𝑃𝑖𝑝𝑒	𝐵	𝑜𝑢𝑡𝑎𝑔𝑒, 𝑃𝑖𝑝𝑒	𝐶	𝑜𝑢𝑡𝑎𝑔𝑒) ×
(𝑃𝑖𝑝𝑒	𝐵	𝑓𝑎𝑖𝑙𝑢𝑟𝑒	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 × 𝑃𝑖𝑝𝑒	𝐶	𝑓𝑎𝑖𝑙𝑢𝑟𝑒	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦) +
𝑃𝑖𝑝𝑒	𝐷	𝑢𝑛𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦                 (14) 

The combined outage time of full loss of supply for that 
example is then the product of the combined unavailability 
and combined failure probability. 
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Combination of Failure Rate and Outage 
Infrastructure failure rates and outage times are not unique, 
and both have probabilistic distributions. A large spectrum of 
possible failure rate and outage time combinations exists for 
every pipe and pump in a supply system. It is generally not 
possible to generate all those combinations because water 
supply infrastructure failure data is generally sparse and at 
best is usually quoted as only an average rate. Fortunately, 
infrastructure outage times are more available and are even 
sometimes quoted as 5, 50 and 95th percentile values. 
Those average failure rates and the 5, 50 and 95th 
percentile outage times can then be combined to provide 
three failure options: 

• 5th percentile Outages – Combination of failure rate 
multiplied by 0.95 and 5th percentile outage time 

• 50th percentile Outages – Combination of failure rate 
multiplied by 0.5 and 50th percentile outage time 

• 95th percentile Outages – Combination of failure rate 
multiplied by 0.05 and 95th percentile outage time 

The outcomes of these three options can be tested using 
equation (11) to calculate the demand percentiles, and in 
turn the associated demand peaking factors. For example, it 
might be found that the peaking factors associated with a 
5th percentile outage when combined with the 5th percentile 
failure time has a greater storage requirement than the 
peaking factors associated with a 50th percentile outage 
combined with the 50th percentile failure time. 

Fire-fighting Reserve 
It is noted that there is no reference to a fire-fighting reserve 
in Figure 1 because fire events are considered to be just 
another emergency event. Fire-fighting water main 
pressures are required by AS2419.1 - Fire Hydrant 
Installations to be available 95% of the time, and the 95th 
percentile peaking factor values are listed for the south-east 

Queensland supply area in the online PF Table (Donaldson 
2018-4).  

Failure Persistence Storage Calculation 

Equation (10) is again applied for the calculation of the 
required failure persistence storage using the MD peaking 
factor determined after calculating the Demand Percentile 
(equation (11)) for the failure event, and the MD and 30 Day 
Peaking Factors from the online PF Table (Donaldson 2018-
4). If the failure event reduces the time of inflow to the 
storage, equation (10) needs to be amended as shown in 
equation (15).  

𝐹𝑎𝑖𝑙𝑢𝑟𝑒	𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒	𝑆𝑡𝑜𝑟𝑎𝑔𝑒 = l𝑀𝐷	𝑃𝑒𝑎𝑘𝑖𝑛𝑔	𝐹𝑎𝑐𝑡𝑜𝑟 ×

𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙	𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒	𝑃𝑒𝑟𝑖𝑜𝑑(*J<) −

(𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙	𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒	𝑃𝑒𝑟𝑖𝑜𝑑 − 𝐹𝑎𝑖𝑙𝑢𝑟𝑒	𝑇𝑖𝑚𝑒) ×	 R[\]^_	
`T

	m ×

𝐴𝐷	      
                                                                                        (15) 

where the Critical Persistence Period cannot be less than 
the Failure Time. 

 
RESERVOIR STORAGE 
WORKED EXAMPLE 
A hypothetical town water supply in south east Queensland 
needs a new reservoir. The reservoir will be gravity supplied 
by an existing pipeline connected to a highly reliable water 
supply grid. The pipeline, however, has a known history of 
failures and has only a fair reliability. The reservoir needs to 
be sized to include adequate failure storage to allow for the 
repair of the pipeline when it fails. Figure 5 conceptually 
shows the water supply system. 

 

 

Figure 5:  Example: Water Supply System 
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The design water supply demand is 24,000 equivalent 
persons made up of 18,000 residential and 8,000 non-
residential persons. The average day design demand is 4.7 
ML. The pipeline has a transfer capacity of 7.6 ML/d. 

There are three steps to be worked through to determine the 
required reservoir volume: 

No-failure Persistence Storage 
Using equation (12) the Level of Service for this water 
supply is calculated as 10.9 years. From the online PF Table 
(Donaldson 2018-4) the MD and 30 Day peaking factors for 
a supply area with an average day demand of 4.7 ML and a 
Level of Service of 10.9 years are respectively 2.23 and 

1.51. Using equations (3), (9) and (10) the no-failure 
persistence storage equals 5.6 ML.  

Failure Persistence Storage 
Table 1 sets out the four pipes which make up the pipeline 
supplying the proposed new reservoir with their historical 
failure rates as shown on Figure 5.  

Also included are the 5, 50 and 95 percentile repair times if 
the pipes were to fail. These have been developed from the 
town water authority’s operational experience. These failure 
rates and outage times have been broken into three groups, 
5th percentile Outages, 50th percentile Outages and 95th 
percentile Outages as described above, and Combined Pipe 
Failures using equations (13) and (14).  

 

Table 1: Example Water Supply System Combined Failures 
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A 0.150 4.0 8.0 14.0 0.143 0.57 4.0 0.075 0.60 8.0 0.008 0.11 14.0 

B 0.480 3.0 6.0 11.0 0.456 1.37 3.0 0.240 1.44 6.0 0.024 0.26 11.0 

C 0.320 3.0 7.0 13.0 0.304 0.91 3.0 0.160 1.12 7.0 0.016 0.21 13.0 

D 0.400 4.0 8.0 14.0 0.380 1.52 4.0 0.200 1.60 8.0 0.020 0.28 14.0 

Combined Pipe Failures 0.661 2.51 3.8 0.313 2.43 7.8 0.028 0.39 14.0 

 

Table 1 shows the three combined pipe failure scenarios as 
follows:  

• 5th percentile Outages – A combined failure rate of 0.661, 
(~ once in 2 years) with an associated outage time of 3.8 
hours. 

• 50th percentile Outages – A combined failure rate of 
0.313, (~ once in 3 years) with an associated outage time 
of 7.8 hours. 

• 95th percentile Outages – A combined failure rate of 
0.028, (~ once in 36 years) with an associated outage 
time of 14 hours. 
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Using equation (11) with a Level of Service of 10.9 years, 
the demand percentiles for these three failure scenarios are 
calculated as respectively 99.99%, 98.4% and 26.6%. As for 
the no-failure case, the MD and 30 Day peaking factors are 
looked up from the online PF Table (Donaldson 2018-4). 
The required persistence storage for the three failure 
scenarios are then calculated using equations (3), (9) and 
(15) as follows: 

• 5th percentile Outages – 6.8 ML 
• 50th percentile Outages – 3.0 ML 
• 95th percentile Outages – 2.7 ML 
 
Reservoir Volume 
The required reservoir volume is the sum of the dead water 
allowance, the diurnal demand storage, the freeboard 
allowance and the maximum of the no-failure and failure 
persistence storage volumes (i.e. the maximum of 5.6, 6.8, 
3.0 and 2.7 = 6.8 ML).  

This worked example has only considered the persistence 
storage requirements for the no-failure and pipe failure 
scenarios. A more complete assessment would also have 
included the fire-fighting demand scenario, but in practice it 
would be unusual for that scenario to require the greatest 
persistence storage. 

 

CONCLUSIONS 
The active volume of a distribution reservoir has only two 
storage components – diurnal demand storage and 
persistence storage. No-failure persistence storage provides 
for peaks in demand not attributable to diurnal variations.  

Emergency storages, including fire-fighting reserves, are just 
particular types of failure persistence storage and the 
persistence storage volume held in a reservoir needs only 
be the maximum of the calculated no-failure and failure 
persistence storages. 

Persistence demand can be represented as a logarithmic 
decay function where the decay rate is a function of the 
supply area’s MD and 30 Day peaking factors. The net 
persistence storage required for any event is the reservoir 
persistence demand for the period of the event less than the 
reservoir inflow during that period. Solving this relationship 
as a differential equation will determine the critical event 
period, and the maximum required persistence storage. 

Persistence demand during a no-failure and a failure event 
is calculated in the same manner except that the MD and 30 

Day peaking factors for failure events are defined by the 
Demand Percentile equation which is a function of the 
event’s failure rate and the LOS adopted for the supply area. 
The peaking factors for no-failure events are, by definition, 
those associated with the 100th percentile demand.  

The level of service adopted for a supply area used in the 
Demand Percentile equation is the same for both no-failure 
and failure events. Infrastructure failure rates used with 
failure events need to include all elements in the supply 
delivery chain to the reservoir and should be combined 
using Boolean algebra. Outage times should be similarly 
combined. Calculating the persistence storage for failure 
events with combinations of failure rates and outage times 
can identify the maximum required failure persistence 
storage. 
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